3.48 \(\int \frac{\sqrt{2-3 x} \sqrt{1+4 x}}{\sqrt{-5+2 x} (7+5 x)} \, dx\)

Optimal. Leaf size=151 \[ -\frac{41 \sqrt{\frac{2}{33}} \sqrt{5-2 x} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right ),\frac{1}{3}\right )}{25 \sqrt{2 x-5}}+\frac{2 \sqrt{11} \sqrt{2 x-5} E\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{5 \sqrt{5-2 x}}+\frac{69 \sqrt{5-2 x} \Pi \left (\frac{55}{124};\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{25 \sqrt{11} \sqrt{2 x-5}} \]

[Out]

(2*Sqrt[11]*Sqrt[-5 + 2*x]*EllipticE[ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2])/(5*Sqrt[5 - 2*x]) - (41*Sqrt[2
/33]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/(25*Sqrt[-5 + 2*x]) + (69*Sqrt[5 - 2*x]*E
llipticPi[55/124, ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2])/(25*Sqrt[11]*Sqrt[-5 + 2*x])

________________________________________________________________________________________

Rubi [A]  time = 0.121094, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.257, Rules used = {163, 168, 538, 537, 158, 114, 113, 121, 119} \[ -\frac{41 \sqrt{\frac{2}{33}} \sqrt{5-2 x} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right )|\frac{1}{3}\right )}{25 \sqrt{2 x-5}}+\frac{2 \sqrt{11} \sqrt{2 x-5} E\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{5 \sqrt{5-2 x}}+\frac{69 \sqrt{5-2 x} \Pi \left (\frac{55}{124};\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{25 \sqrt{11} \sqrt{2 x-5}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[2 - 3*x]*Sqrt[1 + 4*x])/(Sqrt[-5 + 2*x]*(7 + 5*x)),x]

[Out]

(2*Sqrt[11]*Sqrt[-5 + 2*x]*EllipticE[ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2])/(5*Sqrt[5 - 2*x]) - (41*Sqrt[2
/33]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/(25*Sqrt[-5 + 2*x]) + (69*Sqrt[5 - 2*x]*E
llipticPi[55/124, ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2])/(25*Sqrt[11]*Sqrt[-5 + 2*x])

Rule 163

Int[(Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)])/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Dist[((b*e - a*f)*(b*g - a*h))/b^2, Int[1/((a + b*x)*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x
] + Dist[1/b^2, Int[Simp[b*f*g + b*e*h - a*f*h + b*f*h*x, x]/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x],
x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*
x]*Sqrt[(b*(c + d*x))/(b*c - a*d)])/(Sqrt[c + d*x]*Sqrt[(b*(e + f*x))/(b*e - a*f)]), Int[Sqrt[(b*e)/(b*e - a*f
) + (b*f*x)/(b*e - a*f)]/(Sqrt[a + b*x]*Sqrt[(b*c)/(b*c - a*d) + (b*d*x)/(b*c - a*d)]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0]) &&  !LtQ[-((b*c - a*d)/d), 0]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 121

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[(b*(c
+ d*x))/(b*c - a*d)]/Sqrt[c + d*x], Int[1/(Sqrt[a + b*x]*Sqrt[(b*c)/(b*c - a*d) + (b*d*x)/(b*c - a*d)]*Sqrt[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Si
mplerQ[a + b*x, e + f*x]

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{\sqrt{2-3 x} \sqrt{1+4 x}}{\sqrt{-5+2 x} (7+5 x)} \, dx &=\frac{1}{25} \int \frac{109-60 x}{\sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}} \, dx-\frac{713}{25} \int \frac{1}{\sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x} (7+5 x)} \, dx\\ &=-\left (\frac{6}{5} \int \frac{\sqrt{-5+2 x}}{\sqrt{2-3 x} \sqrt{1+4 x}} \, dx\right )-\frac{41}{25} \int \frac{1}{\sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}} \, dx+\frac{1426}{25} \operatorname{Subst}\left (\int \frac{1}{\left (31-5 x^2\right ) \sqrt{\frac{11}{3}-\frac{4 x^2}{3}} \sqrt{-\frac{11}{3}-\frac{2 x^2}{3}}} \, dx,x,\sqrt{2-3 x}\right )\\ &=-\frac{\left (41 \sqrt{\frac{2}{11}} \sqrt{5-2 x}\right ) \int \frac{1}{\sqrt{2-3 x} \sqrt{\frac{10}{11}-\frac{4 x}{11}} \sqrt{1+4 x}} \, dx}{25 \sqrt{-5+2 x}}+\frac{\left (1426 \sqrt{\frac{3}{11}} \sqrt{5-2 x}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (31-5 x^2\right ) \sqrt{\frac{11}{3}-\frac{4 x^2}{3}} \sqrt{1+\frac{2 x^2}{11}}} \, dx,x,\sqrt{2-3 x}\right )}{25 \sqrt{-5+2 x}}-\frac{\left (6 \sqrt{-5+2 x}\right ) \int \frac{\sqrt{\frac{15}{11}-\frac{6 x}{11}}}{\sqrt{2-3 x} \sqrt{\frac{3}{11}+\frac{12 x}{11}}} \, dx}{5 \sqrt{5-2 x}}\\ &=\frac{2 \sqrt{11} \sqrt{-5+2 x} E\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{5 \sqrt{5-2 x}}-\frac{41 \sqrt{\frac{2}{33}} \sqrt{5-2 x} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{1+4 x}\right )|\frac{1}{3}\right )}{25 \sqrt{-5+2 x}}+\frac{69 \sqrt{5-2 x} \Pi \left (\frac{55}{124};\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{25 \sqrt{11} \sqrt{-5+2 x}}\\ \end{align*}

Mathematica [A]  time = 0.403959, size = 97, normalized size = 0.64 \[ \frac{\sqrt{5-2 x} \left (41 \text{EllipticF}\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right ),-\frac{1}{2}\right )-110 E\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )-69 \Pi \left (\frac{55}{124};-\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )\right )}{25 \sqrt{22 x-55}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[2 - 3*x]*Sqrt[1 + 4*x])/(Sqrt[-5 + 2*x]*(7 + 5*x)),x]

[Out]

(Sqrt[5 - 2*x]*(-110*EllipticE[ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2] + 41*EllipticF[ArcSin[(2*Sqrt[2 - 3*x
])/Sqrt[11]], -1/2] - 69*EllipticPi[55/124, -ArcSin[(2*Sqrt[2 - 3*x])/Sqrt[11]], -1/2]))/(25*Sqrt[-55 + 22*x])

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 76, normalized size = 0.5 \begin{align*}{\frac{\sqrt{11}}{275} \left ( 41\,{\it EllipticF} \left ( 2/11\,\sqrt{22-33\,x},i/2\sqrt{2} \right ) -110\,{\it EllipticE} \left ( 2/11\,\sqrt{22-33\,x},i/2\sqrt{2} \right ) +69\,{\it EllipticPi} \left ( 2/11\,\sqrt{22-33\,x},{\frac{55}{124}},i/2\sqrt{2} \right ) \right ) \sqrt{5-2\,x}{\frac{1}{\sqrt{2\,x-5}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2-3*x)^(1/2)*(4*x+1)^(1/2)/(7+5*x)/(2*x-5)^(1/2),x)

[Out]

1/275*(41*EllipticF(2/11*(22-33*x)^(1/2),1/2*I*2^(1/2))-110*EllipticE(2/11*(22-33*x)^(1/2),1/2*I*2^(1/2))+69*E
llipticPi(2/11*(22-33*x)^(1/2),55/124,1/2*I*2^(1/2)))*(5-2*x)^(1/2)*11^(1/2)/(2*x-5)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{4 \, x + 1} \sqrt{-3 \, x + 2}}{{\left (5 \, x + 7\right )} \sqrt{2 \, x - 5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-3*x)^(1/2)*(1+4*x)^(1/2)/(7+5*x)/(-5+2*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(4*x + 1)*sqrt(-3*x + 2)/((5*x + 7)*sqrt(2*x - 5)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{4 \, x + 1} \sqrt{2 \, x - 5} \sqrt{-3 \, x + 2}}{10 \, x^{2} - 11 \, x - 35}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-3*x)^(1/2)*(1+4*x)^(1/2)/(7+5*x)/(-5+2*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)/(10*x^2 - 11*x - 35), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{2 - 3 x} \sqrt{4 x + 1}}{\sqrt{2 x - 5} \left (5 x + 7\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-3*x)**(1/2)*(1+4*x)**(1/2)/(7+5*x)/(-5+2*x)**(1/2),x)

[Out]

Integral(sqrt(2 - 3*x)*sqrt(4*x + 1)/(sqrt(2*x - 5)*(5*x + 7)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{4 \, x + 1} \sqrt{-3 \, x + 2}}{{\left (5 \, x + 7\right )} \sqrt{2 \, x - 5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-3*x)^(1/2)*(1+4*x)^(1/2)/(7+5*x)/(-5+2*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(4*x + 1)*sqrt(-3*x + 2)/((5*x + 7)*sqrt(2*x - 5)), x)